Testing the photoevaporation model with TESS multis

James Owen **Beatriz Campos Estrada** (Imperial College London)

The photoevaporation model - motivation

Observations

p/Rrock

Photoevaporation driven evolution

"Planets with ~1% H/He atmospheres"

H/He atmosphere

Solid Core

"Stripped Cores"

Inferences if you believe photoevaporation!

- 1. Core composition is uniform.
- 2. The Core composition is "Earthlike".
- 3. Planets have been on their observed orbits for most of their lives.
- Planets formed before gas disc dispersal and acquire > 1% by mass atmospheres.

Without planet masses, photoevaporation is an unconstrained problem

How to test photoevaporation - measure masses!

... but there's a problem!

The problem - the mass-loss timescale is uncertain!

The solution - multis - "straddlers"

Constrain the uncertain mass-loss timescale

Predict **"Stripped Earth-like Core**"

mass to be consistent with photoevaporation.

Why TESS? - we need masses

- Kepler has several hundred planets in multi-planet systems that are suitable for this method.
- Only 25 systems have any mass constraints. 24 systems are consistent.
- Kepler-100 maybe inconsistent. \bullet

Beatriz Campos Estrada

Applying for PhD places this fall.

TESS Example - TOI 270

Do it yourself:

https://github.com/jo276/EvapMass

Summary

- Multi-planet straddlers are best systems for testing the photoevaporation model.
- Models can predict the minimum masses of "gaseous" planets to be consistent with photoevaporation.
- Even upper-limits are constraining.
- Maybe prioritise multi-planet straddler systems for follow-up masses.

Radius $[R_{\oplus}]$

